Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 84: 127454, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669815

RESUMEN

BACKGROUND: The perennial evergreen tea (Camellia sinensis) plant is one of the most popular nonalcoholic drinks in the world. Fertilizers and industrial, agricultural, and municipal activities are the usual drivers of soil contamination, contaminating tea plants with potentially toxic elements (PTEs). These elements might potentially accumulate to larger amounts in the leaves of plants after being taken up from the soil. Thus, frequent monitoring of these elements is critically important. METHODS: The present study intended to determine PTEs (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in both tea leaves and infusions using ICP-OES. Various multivariate data analysis methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed to elucidate the potential sources of PTEs contamination, whether from anthropogenic activities or natural origins. Additionally, Pearson's correlation coefficient (PCC) was calculated to assess the relationships between the variables under study. RESULTS: The mean contents (mg/L) of all studied elements in tea infusions decreased in order Mn (150.59 ±â€¯1.66) > Fe (11.39 ±â€¯0.99) > Zn (6.62 ±â€¯0.89) > Cu (5.86 ±â€¯0.62) > Co (3.25 ±â€¯0.64) > Ni (1.69 ±â€¯0.23) > Pb (1.08 ±â€¯0.16) > Cr (0.57 ±â€¯0.09) > Cd (0.46 ±â€¯0.09) > Al (0.05 ±â€¯0.008), indicating that Mn exhibits the highest abundance. The mean concentration trend in tea leaf samples mirrored that of infusions, albeit with higher concentrations of PTEs in the former. The tolerable dietary intake (TDI) value for Ni and provisional tolerable monthly intake (PTMI) value for Cd surpassed the standards set by the WHO and EFSA. Calculated hazard index (HI < 1) and cumulative cancer risk (CCR) values suggest negligible exposure risk. CONCLUSION: Elevated levels of PTEs in commonly consumed tea products concern the public and regulatory agencies.

2.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959786

RESUMEN

In recent years, there has been a growing concern about the negative impact of unforeseen contaminants such as metals in commonly consumed food items, which pose a threat to human well-being. Therefore, it is of utmost importance to evaluate the levels of these contaminants to guarantee the safe consumption of these food items. The goal of the current research is to determine the levels of essential (EMs: Mg, Ca, Mn, Fe, Co, Cu, and Zn) and potentially toxic metals (PTMs: Al, Cr, Ni, As, Cd, and Pb) in various brands of wheat-based sweets. One hundred samples were collected and analysed via flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). Also, the current study was to investigate the distribution, correlation, and multivariate analysis of 13 metals (Mg, Ca, Mn, Fe, Co, Cu, Zn, Al, Cr, Ni, As, Cd, and Pb). Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to interpret the metals' association. The concentration (mg/kg) ranges of EMs were, in order, Mg (12.70-65.67), Ca (24.02-209.12), Mn (1.32-9.61), Fe (4.55-111.23), Co (0.32-8.94), Cu (2.12-8.61), and Zn (2.60-19.36), while the concentration (mg/kg) ranges of PTMs were, in order, Al (0.32-0.87), Cr (0.17-5.74), Ni (0.36-1.54), Cd (0.16-0.56), and Pb (0.14-0.92), and As was not detected in any sample under investigation. The HCA data revealed that Co, Al, and Ni form clusters with other metals. Sweets are prepared at high temperatures, and the elevated temperatures can increase the likelihood of Ni and Al leaching from stainless steel. Tolerable dietary intake (TDI) values for Ni were higher than the values established by the European Food Safety Authority (EFSA). The CR value found for the Ni and Cr was at the threshold level of cancer risk, if an amount of 25 g were to be used over a lifetime. In a nutshell, this study highlights the monitoring of EM and PTM levels in wheat-based sweets, and from a food safety perspective, the study is important for consumers of wheat-based sweets.


Asunto(s)
Metales Pesados , Humanos , Metales Pesados/análisis , Triticum , Cadmio/análisis , Plomo/análisis , Intoxicación por Metales Pesados , Análisis Multivariante , Monitoreo del Ambiente/métodos , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...